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Abstract: The present paper is connected with obtaining the exact solution of the generalized Newell-Whitehead-Segel(gNWS)
equation with power law nonlinearity and with time dependent coefficients using tanh function method. It is neces-
sary for the time dependent coefficients to be Riemann integrable.
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1. Introduction

The nonlinear evolution equations(NLEEs) play an important and significant role in modelling various physical
phenomena related to solid state physics,fluid mechanics, plasma physics, population dynamics, chemical kinetics,
nonlinear optics, protein chemistry etc.Newell-Whitehead equation is a NLEE which was originated in the famous
paper of Newell and Whitehead [1] for Be ′nard’s problem. Be ′nard’s problem is a hydrodynamic problem in which
water contained between two plates is heated from below. It exibits patterns like rolls, hexagons or rectangles if the
bifurcation parameter which is related to temperature differences between the plates is above a certain threshhold.
The equation derived by Newell-Whitehead-Segel(NWS) [1, 2] is of the form

ut (x, t )−auxx (x, t ) = bu(x, t )− cu3(x, t )

where a is a (+)ve interger and b and c are real numbers. Over the years researchers have applied various methods
to solve the NWS equation. Malomed B.[8] proposed dispersive NWS equation for travelling wave pattern in binary
fluids. Manaa [3] applied Adomain Decomposition method and multiquadratic quasi-interpolation method. Aasaari
A. [4] and Sarvanan et. al. [5] used differential transform method and Hassan [6] used Homotopy Perturbation method

to NWS equation. Malik et.al.[7] applied
(G ′

G

)
expansion method to obtain generalized travelling wave solutions of

NWS equation.
Of late, NLEEs with time dependent /periodic coefficients [9–13] have attracted the attention of many reserar-

chers. In this paper, we have discussed the generalized NWS (gNWS) equation with power law nonlinearity in the
presence of linear damping and diffusion, and having time dependent coefficients, given by

ut +α(t )unux +β(t )uxx = γ(t )u(1−un) (1)

for (+)ve integer n. Here ut describes the time dependent evolution term , unux and un+1 are the terms with power law
nonlinearity, uxx is the diffusion term. u represents linear damping. α(t ), β(t ) and γ(t ) are the Riemann integrable
time dependent coefficients. Due to the presence of time dependent coefficients, the gNWS equation can not be
integrated by classical integration methods. In this paper, gNWS Eq. (1) is effectively integrated by tanh function
method.
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2. Tanh function method

The beauty of tanh function is that all the derivatives of tanh are expressible in terms of tanh. Suppose that a
NLEE is given by

Q(v, vt , vx , vxx , vxt , vt t , ...) = 0 (2)

Where v = v(x, t ) is unknown function, Q is a polynomial in its arguments. Introducing a new variable

Y = t anh(µξ), ξ= p(t )x +q(t ) (3)

where p(t ), q(t ) are integrable functions of t to be determined, the PDE (2) is transformed into an ODE of wave
variable ξ= p(t )x +q(t ) as

P (v, v
′
, v

′′
, ...) = 0 (4)

where ′ = d/dξ
Equation (4) is integrated considering all the constants of integration of the derivative terms to be zero. Then

the change of derivatives are as follows:

d

dξ
= (1−Y 2)

d

dY

d 2

dξ2 =−2µ2Y (1−Y 2)
d

dY
+µ2(1−Y 2)

d 2

dY 2

tanh function method permits the finite expansion

v(µξ) = F (Y ) =
m∑

i=0
ai Y i +

m∑
i=1

bi Y −i (5)

for some (+)ve integer m, which in most of the cases is determined by homogeneous balancing technique [14]. The
constants ai and bi are unknown to be determined. Substituting (5) into (4), the ODE (4) yields an algebraic equation
in power of Y. Vanishing all these coefficients then obtained a system of algebraic equations involving the parameters
ak , bk (k = 0,1,2, ......m), µ, p(t ), q(t ).

3. Solution of Newell-Whitehead-Segel equation by tanh method

In this section we shall investigate the gNWS Eq. Equation 1 with the help of tanh function method described
in section 2. A Special case where γ(t ) = 0 and n = 1 is the Burger equation while γ(t ) = 0 and n = 2 gives rise to the
generalized Burger equation.

Sustitute the relation

u(x, t ) = [λ(t )v(ξ)]
1
n , ξ= p(t )x +q(t ) (6)

to transform the Eq. (1) to

λ(t )v2λ′(t )+λ(t )2v v ′(xp ′(t )+q ′(t ))+α(t )λ(t )3v2v ′p(t )+β(t )
(( 1

n
−1

)
λ(t )2v ′2p(t )2 +λ(t )2v v ′′p(t )2)

= nγ(t )(λ(t )2v2 −λ(t )3v3)
(7)

Balancing v v ′′ and v3 we get
m +m +2 = 3m so that
m = 2
and we have

v(ξ) = a0 +a1Y (ξ)+a2Y (ξ)2 +b1Y (ξ)−1 +b2Y (ξ)−2 (8)

Substitute (8) in Eq. (7), collect the coefficients of power of x j Y i , −7 ≤ i ≤ 7, j = 0,1 and set all the coefficients to zero.
Y 7 and Y −7 yeilds the following system of equations :

2a3
2µα(t )λ(t )3 = 0

2b3
2µα(t )λ(t )3 = 0

This results a2 = 0 and b2 = 0 for α(t ) 6= 0 and λ(t ) 6= 0 The simplified remaining equations are
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xY 3 :
d p(t )

d t
= 0 =⇒ p(t ) = const ant s(say p(t ) = k)

Y 4 : −a3
1µα(t )λ(t )3 +a2

1µ
2(

1

n
−1)β(t )λ(t )2 +2a2

1µ
2β(t )λ(t )2 = 0

Y −4 : −b3
1µα(t )λ(t )3 +b2

1µ
2(

1

n
−1)β(t )λ(t )2 +2b2

1µ
2β(t )λ(t )2 = 0

Y 3 : −2a0a2
1µα(t )λ(t )3 +2a0a1µ

2β(t )λ(t )2 +a3
1nγ(t )λ(t )3 −a2

1µλ(t )2q ′(t ) = 0

Y −3 −2a0b2
1µα(t )λ(t )3 +2a0b1µ

2β(t )λ(t )2 +b3
1nγ(t )λ(t )3 −b2

1µλ(t )2q ′(t ) = 0

Y 2 : −a2
0 a1µα(t )λ(t )3 +3a0a2

1nγ(t )λ(t )3 −a0a1µλ(t )2q ′(t )+a3
1µα(t )λ(t )3

−a2
1b1µα(t )λ(t )3 −2a2

1µ
2(

1

n
−1)β(t )λ(t )2 −a2

1nγ(t )λ(t )2 +a2
1λ(t )λ′(t )

−2a2
1µ

2β(t )λ(t )2 −2a1b1µ
2(

1

n
−1)β(t )λ(t )2 +2a1b1µ

2β(t )λ(t )2 = 0

Y −2 : −a2
0b1µα(t )λ(t )3 +3a0b2

1nγ(t )λ(t )3 −a0b1µλ(t )2q ′(t )−a1b2
1µα(t )λ(t )3

−2a1b1µ
2(

1

n
−1)β(t )λ(t )2 +2a1b1µ

2β(t )λ(t )2 +b3
1µα(t )λ(t )3

−2b2
1µ

2(
1

n
−1)β(t )λ(t )2 −b2

1nγ(t )λ(t )2 +b2
1λ(t )λ′(t )−2b2

1µ
2β(t )λ(t )2 = 0

Y : 3a2
0 a1nγ(t )λ(t )3 +2a0a2

1µα(t )λ(t )3 −2a0a1nγ(t )λ(t )2 +2a0a1λ(t )λ′(t )

−2a0a1µ
2β(t )λ(t )2 +3a2

1b1nγ(t )λ(t )3 +a2
1µλ(t )2q ′(t ) = 0

Y −1 : 3a2
0b1nγ(t )λ(t )3 +2a0b2

1µα(t )λ(t )3 −2a0b1nγ(t )λ(t )2 +2a0b1λ(t )λ′(t )

−2a0b1µ
2β(t )λ(t )2 +3a1b2

1nγ(t )λ(t )3 +b2
1µλ(t )2q ′(t ) = 0

Y 0 : a3
0nγ(t )λ(t )3 +a2

0 a1µα(t )λ(t )3 +a2
0b1µα(t )λ(t )3 −a2

0nγ(t )λ(t )2

+a2
0λ(t )λ′(t )+6a0a1b1nγ(t )λ(t )3 +a0a1µλ(t )2q ′(t )+a0b1µλ(t )2q ′(t )+a2

1b1µα(t )λ(t )3

+a2
1µ

2(
1

n
−1)β(t )λ(t )2 +a1b2

1µα(t )λ(t )3 +4a1b1µ
2(

1

n
−1)β(t )λ(t )2

−2a1b1nγ(t )λ(t )2 +2a1b1λ(t )λ′(t )−4a1b1µ
2β(t )λ(t )2 +b2

1µ
2(

1

n
−1)β(t )λ(t )2 = 0

Solving thses equations we obtain the following cases with feasible values of the parameters.

Case 1:

b1 = 0, nα(t )λ(t ) 6= 0, a1 = kµ(n +1)β(t )

nα(t )λ(t )
, a0 6= 0, a0 = ±µ(n +1)

n
or

a0 = n2(n +1)2γ(t )± (n2 +n)
√

n2(n +1)2γ(t )2 −4(n −1)2µ2α(t )2

2n2(n −1)α(t ))
, n > 1

λ(t ) = 2a0

3a2
0 +a2

1 −e
2a0

∫ t
1 (− nγ(t )

2a0
)d t

, q(t ) =
∫ t

1

−2a0a1kµα(t )λ(t )+2a0k2µ2β(t )+a2
1nγ(t )λ(t )

a1µ
d t

(9)

Case 2:

a1 = 0, nα(t )λ(t ) 6= 0, b1 = kµ(n +1)β(t )

nα(t )λ(t )
, a0 6= 0, b1µ 6= 0, a0 = ±µ(n +1)

n
or

a0 = n2(n +1)2γ(t )± (n2 +n)
√

n2(n +1)2γ(t )2 −4(n −1)2µ2α(t )2

2n2(n −1)α(t ))
, n > 1

λ(t ) = 2a0

3a2
0 +b2

1 −e
2a0

∫ t
1 (− nγ(t )

2a0
)d t

, q(t ) =
∫ t

1

−2a0b1kµα(t )λ(t )+2a0k2µ2β(t )+b2
1nγ(t )λ(t )

b1µ
d t

(10)
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Case 3:

nα(t )λ(t ) 6= 0, b1 = kµ(n +1)β(t )

nα(t )λ(t )
, a1 = b1, a0 6= 0, µ(n +1) 6= 0, β(t )γ(t ) 6= 0,

a0 =±2µ(1+n)

n

or a0 = n2(n +1)2γ(t )± (n2 +n)
√

n2(n +1)2γ(t )2 −16(n −1)2µ2α(t )2

2n2(n −1)α(t ))
, n > 1

λ(t ) = 2a0

3a2
0 +4b2

1 −e
2a0

∫ t
1 (− nγ(t )

2a0
)d t

, q(t ) =
∫ t

1

−2a0kµα(t )λ(t )+b1(n2 +n)γ(t )λ(t )

µ(n +1)
d t

(11)

Since a1 , b1 and a0 are constants therefore the parameters α(t ), β(t ) and γ(t ) must satisfy the constraint β(t ) =
α(t )λ(t ) and α(t ) = γ(t ) in all the above three cases.

Case 4:

This case yields generalized Burger equation. The parameters bear the values as follows:

γ(t ) = 0, nα(t )λ(t ) 6= 0, b1 = kµ(n +1)β(t )

nα(t )λ(t )
, a1 = b1, a0 6= 0, λ(t )λ′(t ) = 0 (12)

Since a1 and b1 are constants therefore the parameters α(t ), β(t ) and γ(t ) must satisfy the constraint β(t ) =α(t )γ(t ).

This results a0 =±2µ(n +1)

n
, n 6= 0

q(t ) =−
∫ t

1

2k(a0b1 −a0)µα(t )λ(t )

b1
d t Therefore we obtain the following solutions for different cases:

The solution for Case 1 is

u(x, t ) = [( 2a0

3a2
0 +a2

1 −e−
∫ t

1 nγ(t )d t

)
a0 +a1t anh(ξ)

] 1
n ξ= x +

∫ t

1

(−2a0a1kµ+2a0k2µ2 +a2
1n)α(t )λ(t )

a1µ
d t

a0 = ±µ(n +1)

n
, n 6= 0 or a0 = n2(n +1)2 ± (n2 +n)

√
n2(n +1)2 −4(n −1)2µ2

2n2(n −1)
, n > 1

a1 = kµ(n +1)

n

The solution for Case 2 is

u(x, t ) = [( 2a0

3a2
0 +b2

1 −e−
∫ t

1 nγ(t )d t

)
a0 +b1coth(ξ)

] 1
n ξ= x +

∫ t

1

(−2a0b1kµ+2a0k2µ2 +b2
1n)α(t )λ(t )

b1µ
d t

a0 = ±µ(n +1)

n
, n 6= 0 or a0 = n2(n +1)2 ± (n2 +n)

√
n2(n +1)2 −4(n −1)2µ2

2n2(n −1)
, n > 1

b1 = kµ(n +1)

n

The solution for Case 3 is

u(x, t ) = [ 2a0

3a2
0 +4b2

1 −e−
∫ t

1 nγ(t )d t
(a0 +b1

(
t anh(ξ)+ coth(ξ)

)
)
] 1

n ,

ξ= x +
∫ t

1

−2a0kµα(t )λ(t )+b1(n2 +n)γ(t )λ(t )

µ(n +1)
d t

a0 =±2µ(1+n)

n
, n 6= 0 or a0 = n2(n +1)2 ± (n2 +n)

√
n2(n +1)2 −16(n −1)2µ2

2n2(n −1)
, n > 1

a1 = b1 = kµ(n +1)

n

4. Observations

The graphical observations of the solution of the gNWS equation shows that for n = 1 the variable coefficients
gNWS equations gives kink type solutions for b1 = 0. For non-zero a0, a1 andb1 the solutions are unpredictable for
smaller values of x. But as x increases the solutions gradually become stable.
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(a) (b)

(c)

Fig. 1. (a) α(t ) = t an(t ) , (b) α(t ) = t si n(t ) , (c) α(t ) = e t si nt with b1 = 0 and n = 1

(a) (b)

(c) (d)

Fig. 2. (a)-(b) α(t ) = t si n(t ) for n=2, (c)-(d) α(t ) = t si n(t ) for n=3
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5. Conclusion

In this paper, we have shown that tanh function method is an efficient tool for solving gNWS equation. Solutions
of gNWS equation are obtained in three different forms de- pending on the values of the unknowns.The generalized
Burger equation, as a special case, gets solved naturally. Also we have observed that the time dependent coefficients
must satisfy some constraint conditions to retain the originality of the gNWS equation. These constraint conditions
in fact help in simplifying the values of the unknowns.
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