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Abstract: 1In this paper, a non-standard finite difference scheme is presented to solve a weakly coupled system of singularly
perturbed convection-diffusion equations with discontinuous source term on uniform mesh. The leading term of
each equation is multiplied by a small positive parameter with different magnitudes. Boundary and weak interior
layers appear in the solution of the problem. The method is proved to be uniformly convergent with respect to the
singular perturbation parameters. Numerical results are provided to illustrate the theoretical results and compares
well with the existing standard finite difference method on Shishkin mesh.
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1. Introduction

Singular perturbation problems (SPPs) arise in diverse areas of science and engineering including fluid mechan-
ics, fluid dynamics, chemical reactor theory, aero dynamics, combustion, plasma dynamics, magneto hydrodynamics,
rarefied gas dynamics, control theory, oceanography, nuclear engineering. Modeling of steady and unsteady viscous
flow problems with high Reynolds number, convective heat transport problems with large péclet numbers, magneto-
hydrodynamics duct problems at high Hartman number, drift diffusion equation of semiconductor device modeling,
boundary layer problems, Wentzel, Kramers and Brillouin (WKB) problems are some of the applications of SPPs. The
system of SPPs have applications in electro analytical chemistry, predator prey population dynamics, modeling of op-
timal control situations and resistance-capacitor electrical circuits. These problems are characterized by the presence
of small positive parameters multiplying the highest order derivatives of the differential equations. Due to these small
parameters, it is very difficult to obtain satisfactory numerical solutions. It is a well-known fact that the solution of
SPPs exhibit a multi-scale character i.e., the solution varies very rapidly in a narrow region where as it varies slowly and
uniformly out side these regions. This leads to boundary and/or interior layers in the solution of the problems. Classi-
cal numerical methods fail to produce good approximations for these problems. Therefore, it is important to develop
numerical methods for these problems, whose accuracy does not depend upon the perturbation parameter(s) which
are called as parameter-uniform numerical methods. There are two important approaches widely used in the liter-
ature for the development of uniformly convergent numerical methods, namely, Fitted operator method (FOM) and
fitted mesh method (FMM). In FOM, because of the uniform mesh, the layers will be resolved automatically without
having to decompose the solution. But FMMs use standard classical finite difference schemes on specially designed
piece-wise uniform mesh. A priori knowledge about the location and width of the boundary layer(s) are required for
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the construction of the mesh. For a variety of possible exponentially fitting techniques, one can refer the book by
Doolan et al. [1]. Mickens [2, 3] gave a novel approach of non-standard finite difference method (NSFDM) and the ba-
sic idea is to modify the denominator of the discrete second order derivatives with suitable functions in the governing
differential equations, which comes under the category of FOM. The information on the use of NSFDMs for various
types of problems arising in many different fields can be found in the survey article [4].

There are several articles available in the literature describing various numerical methods to solve the SPPs, but
they mostly dealt with singularly perturbed problems containing single Eq. [5, 6]. A few authors have developed robust
numerical methods for a coupled system of singularly perturbed convection-diffusion [7, 8] and reaction-diffusion
[9, 10] problems. Linss and Stynes [11] provided a survey article on the current research about the numerical solution
of systems of singularly perturbed differential equations which deals with finite difference methods. Very few works
can be seen in the literature for system of SPPs with non-smooth data, see for example [12, 13] and the references there
in. Most of these works are based on a piecewise uniform Shishkin mesh using standard finite difference scheme.
Using mesh equidistribution technique, Das and Natesan [14] considered a system of singularly perturbed weakly
coupled convection-diffusion equations having different parameters of different magnitudes and obtained first order
uniform convergence with respect to the diffusion parameters. Munyakazi [15] proposed a uniformly convergent nu-
merical method based on non-standard finite difference scheme for the coupled system of convection-diffusion equa-
tions for smooth case and obtained first order convergence. Tamilselvan et al.[16] developed a numerical method for
singularly perturbed system of second order ordinary differential equations of convection-diffusion type with a dis-
continuous source term having equal diffusion parameters using fitted mesh method on piecewise uniform Shishkin
mesh and the method was proved to be almost first order parameter-uniform convergence. Motivated by the works
(1, 2, 8, 15, 16], in this paper, we have developed a parameter uniform NSFDM on uniform mesh for a weakly cou-
pled system of singularly perturbed convection-diffusion equations with discontinuous source term having different
diffusion parameters.

Consider the problem of finding y;, y» € €°(Q) NE Q) NE*Q uQ*) such that

P1y(x) = —ey] (%) — a1 (x) y} (x) + b1y () 31 (0) + b12(0)y2(x) = fi(x), Y x€Q uQ* 1)

Poy(x) = =y’ (x) — ap(x) Y5 (x) + b1 (x) 31 () + bo2 (1) y2(x) = fo(x), Y x€ Q- UQ* @)
with the boundary conditions

nO@=p, yM=q, y0=r y()=s, 3)
where € and p are small parameters such that 0 < € < g < 1, and assume that

aj(x)=a; >0, ar(x)=ay>0, 4)

bi2(x) =0, b21(x) =0, )

b11(x) + b12(x) = 1 >0, bp1(x) + boa(x) = f2 >0, VYxeQ. 6)

AN = C, 1@ = C. Q)

Here Q = (0,1),Q" = 0,d),Q" = (d,1),d € Q and ¥ = (y1,y2)!. It is also assumed that the functions
ay(x), az(x), b11(x), b12(x), b21(x), ba2 (x) are sufficiently smooth on Q, and the source terms f1(x), f2(x) are sufficiently
smooth on Q\ {d}. Further, fi(x), f>(x) and their derivatives are assumed to have right and left limits at the point
x = d. In general, this discontinuity gives rise to weak interior layers in the solution of the problem.

The above coupled system of Egs. (1)-(3) can be written in vector form as

d2
- —toz 0| - Y _

P.,.y(x)= dx 42 Y(x)—Ax) Y (x) +Bx)y(x) = f(x), YxeQ uQ*
0 Hax
with the boundary conditions

—me(P) =4
y(O)—(r), y(l)—(s),

where

— J/I(X)) _(al(x) 0 ) _(bn(x) blz(x)) = _(f1(x))
y(x)‘(yz(x) C AT 400 BT b b | TP R )

The norm which is used for studying the convergence of numerical solution to the exact solution of the singular per-

turbation problem is the maximum norm defined by [|¢(x) |l = sup ¢ (x)|, k =1,2 and ”$”Q =max{|l¢11l, 2]} for a
xeQ

function ¢ defined on a domain Q. The jump at d is denoted in any function w with [w](d) = wdhH-wd). Through-
out the paper, C denotes a generic positive constant which is independent of the singular perturbation parameters €, 1
and of the mesh parameter h.

The rest of the paper is organized as follows: In Section 2, some theoretical results like maximum principle,
stability and bounds on the solution derivatives for the continuous problem are discussed. The discrete version of
the problem using non-standard finite difference scheme on uniform mesh is presented in Section 3. Error analysis is
carried out in Section 4. Numerical results obtained from the test problem and comparison with the existing results
are provided in Section 5. Finally, Section 6 gives the conclusion of this paper.
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2. Theoretical results

In this section, the maximum principle, stability result and bounds on the solution and its derivatives are estab-
lished for the boundary value problem (BVP) (1)-(3).

Lemma 2.1 (Maximum principle). .
Suppose that J(x) = (y1(x), y2(0) 7, y1,y2 € €°( Q) n€*(Q~ UQ™) satisfies 7(0) = 0,7(1) =0, P,y (x) = 0,and [y'1(d) <
0,Vxe Q" uQ". Theny(x) =0,V xe Q.

Proof. Let y;(m) = min{y;(x)} and y»(n) = min{y,»(x)}. Without loss of generality, assume that y;(m) < y»(n). If
€

xeQ xeQ
y1(m) = 0, then there is nothing to prove. So, let y; (m) < 0, then it will be shown that this leads to a contradiction.
Note that m # {0,1}, and y; (m) =0, y{ (m) = 0.
Therefore, either me Q- uQ* or m=d.

Case-(i): Let me Q~ uQ*. Then, we have

P1y(m) = —eyy (m) — a1(m)yy (m) + b11 (m) y1 (m) + by2(m) y2(m)
= —¢ey] (m) — a1(m)y; (m) + (b11(m) + b12(m)) y1 (m) + (y2(m) — y1 (M) br2(m)
<0,

which contradicts the hypothesis of the Lemma.

Case-(ii): Let m=d.
Assume that there exists a neighborhood Ny, = (d — h, d) such that y; (x) <0 and y; (x) < y2(x),Y x € Np,.
Let x1 # d, x; € Ny, be a point such that y; (x1) > y1(d).
It follows from the mean value theorem that, for some x, € Np, ¥; (x2) <0, and for some x3 € Np, } (x3) > 0.
Also note that y;(x3) <0, yi (x3) =0, since x3 € Nj,.
Thus,
P1y(x3) = =gy} (x3) — a1 (x3) '} (x3) + b11 (X3) y1 (x3) + D12 (x3) y2 (X3)
= —£y] (x3) — a1 (x3) ¥} (x3) + (b11(x3) + b12(x3)) y1 (x3) + (2 (x3) — y1(x3)) D12 (X3)
<0,
which is a contradiction.
Similarly, P,y(x) can be dealt.
Hence, y(x) 20,V x€ Q. O

Lemma 2.2 (SElbility). o
Ify,y2 € €°(QN€*(Q uQ"), thenV xe Q,

- - 1 = .
|yj(x)|SmaX{”_V(O)”r”J’(l)”}“‘E”f”Q*UQ*r =12

where B = min{B1, B2}.

Proof. Define two barrier functions @ (x) = (wF (x), w3 (x))" as
w*(x) = Me+y(x),

_ (1). .
where e = ( ) is the unit column vector and

1

1 —
Me =max{[yO), [y} + Bllfll(rum-

Clearly, »*(0) =0, ®@*(1)=0.

Also,
Py} (x) =M(b11(x) + b12(x)) £ P1J(x)
=B M+ P y(x)
zBmax{[|y1 ), ly1 I} + 1 f1ll £ f1(x)
>0.

Similarly, it can be proved that P,&™ (x) = 0. ~
Hence, P;,,0" (x) =20, V xe Q~ uQ*. Further, [(@*)'](d) = +[}/1(d) =0.
Therefore, by maximum principle, we have ¥ (x) =0, which implies the desired result. O



8 A parameter-uniform non-standard finite difference method for a weakly coupled system of singularly perturbed ...

Lemma 2.3 (Bounds on the solution derivatives).
Lety(x) = (y1(x), y2(x)) T be the solution of the BVP (1)-(3). ThenV x € Q~ uQ", we have

yPwI<ce™, pPwiscu ™, k=12,

1" I

'@l Ce e +p™), Iy @lscutw+e™h.

Proof. By the mean value theorem, there exists a point z € (0, ¢) such that

-0
Vi@ = yi(e) gyl( ).

Therefore, we get

leyr (21 <2lly1ll ®)
Integrating the first equation of the system

—ey] (x) = a1 () Y} (x) + b1 () y1(X) + b12(X) y2 (x) = f1(x)

from 0 to z, we get

Z Z V4 Z
|8(y1'(z) - y1/(0))| = fb11(t)y1(t)dt+ f bia()y2(D)dt—[ar (D) y1 (D] +f ay(y(de— fﬁ(t)dt 9
0 0 0 0

Using (8), it follows that

ley1 O] < l1fi @)1+ CUiyr @1+ ly2(2)1)
Using (9) with z = x, we get

ley1 ()1 < CUlyr )+ Lyl + 1L () 1)
Thus, we have

lyy ()| < C£*1(||y1 QI+ 121+ 1A @D, Y xeQ uQ*
Since y; (x), y2(x) and fi (x) are bounded, ¥V x € Q~ UQ* we have

1Y, (x)| < Ce™! (10)
Similarly, we can get

lyh(x) < Cp™! an
From the first equation of the system, we have

ey (%) = —a1(X) Y} (X) + br1 (0) y1 (%) + b12(x) y2 (x) — f(x) (12)
Using (10) in (12), we get

ly{ ()] =< Ce? (13)
Similarly, we can get

5 ()l < Cu? 14)
To bound the third derivative, differentiate both sides of the first equation of the system, we have

—ey)' () = a1 (0)y] (x) + yy(x)ay (x) = b1 (%) y; (X) = b1 () y1 (%) = br2(x) y5(x) = b, (X) y2 (x) + i (x) (15)

Applying (10) and (13) and using the assumption that the functions a; (x), b11(x), b12(x) and f; (x) and their derivatives
are bounded, we have

1yl <Ce e ?+u™h, VxeQ uQ* (16)
Similarly, we can prove that

lyy (0l <Cut(w?+eh, vxeQ uQ* (17)
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3. Discrete problem

Consider the following uniform mesh on the interval Q = [0,1] with N mesh points, where N is a positive integer.

x0=0, xj=xo+ih, i=01)N, h=N"!,

The interior points of the mesh are denoted by

N _ . ._N N :
Qg,p—{xi.lszsE—l}u{xi.5+lszsN—l}.

Clearly xy = d and ﬁivﬂ = {x,-}év u{d}. Let Y = (Y3, Yz)T be the approximate solution of y(x) = (y1, yg)T.
X ,

Let the discrete operator of P, , be denoted by PQ’ u? =

A non-standard finite difference scheme is constructed on the uniform mesh Q?f u as follows:

For x; #d,

PYY (xi) = AV (x;) — a1 (x) DT Y1 (x7) + by () Y1 () + biz (x) Ya () = fi (x2),
Pé\,/u?(xi = —puA? Yy (x;) — a2 (x;) D™ Yo (x) + b2y (1) Y1 (1) + b2 (%) Yo (x7) = fo(x;),

and for x; = d,
PN Y (d) = f(d)

with the boundary conditions

Yio=3100), Yin=31(1), Yoo =y2(0),
Yi(xi-1) —2Y;(x;) + Yj(x41)

Yj(xiv1) — Yj(x;)

2 _
where A“Y;(x;) = (sj(xi))z

and (s1,1)% (s2,1)%, fj (d) are given by

h
(s1.0)% = (51 (x(0))? = (51,4 (h, £)) = f

h
(s2,)% = (s2(X(D))? = (52,1 (R, )2 = f

fild=h)+ fi(d+h)

fild)= 5 ,j=12.

h
It is easy to verify that (s; ; (h, e)?=h*+0 (?

(o, ) (5)=(2)

, DYj(x) = j=12 f@= (

h
) and (sz,i(h,s))z =h’+ O( "
Egs. (18)-(21) lead to the following (2N — 2) x (2N — 2) system of linear equations:

(18)
19)

(20)

21

fl(d))
L@y

(22)
(23)

(249

(25)

where the tri-diagonal matrices T, T», the diagonal matrices D1, D, and the vectors F}, F, are defined as follows:

(Ty):: = 2¢€ ay,
PR s 02 h

(T 141 = ——— — 20

ii+1 — (Sl,i)2 n ’
M)iji-1=—7—7, i=2(LBN-1,
1ii-1 (Sl,i)z

€
Fi=hHa+ (—) Yo,
h (51,1)?

. N N
Fii=fii i =2(1)(5 -D& (3 + DN -2),

_ fAld-h)+ fid+h)

2 )
£ ai1,N-1
Fin-1=fin-1+ ( 5
(s1,n-1) h

Dy =bia(x), i=11)NN-1).

F

N

+—=+bi,;, i=11NN-1),

i=1(1)(N-2),
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2u

T = —— 4+ 2%

(i 2,07 h
H az,i .

To)i o1 =— - =L =1V -2),

( Z)l,l+1 (Sz,i)2 h 1 (I)( )

(T2)ii-1=— i=2)(N-1),

+byi, i=11)(N-1),

—’
(82,i)?

_ H
Fr=f+ (W) Yo,

. N N
Foi= foi, l=2(1)(? —1)&(3 + DN -2),
r fold—h)+ fo(d+h)

N =
2,7 2 ’

H az N-1
EBy1=fon1t (
f: (s2,n-1)? h

Dy i=bon(x), i=11)NIN-1).

Yon,

Note that the matrices T; and T» in Eq. (25) are both M-matrices.
The solution of the matrix system (25) is solved iteratively using the following simultaneous iterative scheme
nY® =F-Dv,", (26)
T, Y2(k+1) —F-D, Yl(k)’ 27

An arbitrary initial guess for Y, was taken to be (0.1,0.1,...,0.1) T and the stopping criteria were set to be
1Y~y P <107 and vV -y P <1071

It is easy to see that the iterative scheme (26),(27) converges to the solution of the matrix system (25) by adopting the
procedure given in [17].
Analogous to the continuous results stated in Lemma 2.1 and Lemma 2.2, the following results can be proved.

Lemma 3.1 (Discrete l\laximum Principltﬂ. B B B . B
For any mesh function ¥ (x;), assume that o = 0,¥ = 0, Pévy‘l’ =0V x; € oV and DYVWy—-D Wy <0. Then ¥ (x;) =
’ 2

ovxeq. =

L=

Lemma 3.2 (Discrete Stability). L o
If Z(x;) = (4 (x), Zo(xi) T is any mesh function such that Zo >0, Zy =0, and IPé\pr(xi)l <g, then

1
p

— — _ =N .
|Zj(x)| = max{l| Z (xo) I, 1 Z(xm) I} + Z I8l g-v e, VX €Q 0, j=1,2,

where g = (2) 151 = maxtligi 1, I g2} and p = min{fy, a}. O

4. Error analysis

Lemma 4.1.
At each mesh point x; # d, the error satisfies the following estimate:

\PY, (Y -3)(x))| < Ch.

N N — _
Proof. At each grid point x;, i=1,.., (E -1 & (E +1),..., N —1, consider the mesh function (Y —y)(x;), where Y

and y are the solutions of discrete problem and continuous problem respectively.
The local truncation error of the scheme in the first component of the solution is given by

VLi-1=2y1i+ i+l dui
(s1,)? 2h

Pf;(?—?)(xi) :Eyi’,i"'al,iyi,i_f (V1,i+1 = )1,i)- (28)
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Using (s, 1)? from Eq. (22) and the Taylor series expansions of Y1,i-1,Y1,i+1, we get

2 1,2 3 1,3
- _ ar;h aph” ajh ayih ay,;h?
P = x) =€) - hz(l_ e R )h2 R L i (NI L CETY
ayih i Wi a
= lél yi’,i_[aii ;l_uil‘h 8121 ll ”’(6) 2) fE(xi)xl'Jrl)-
Thus
I/ l/
avi m 2
PY(Y - 7))l < Vil | ad 1=+ 1,h|—|+ L1 (29)

Using the Lemma-7 given in [18] for continuous case of reaction-diffusion problem, the following results hold good
for convection-diffusion problem:

exp( Cxl)
lim max ———= =0, (30)
e—01<i<N-1 ek
' exp (_ C(lg—x,-))
lim max ——= =0, (31
e—~01<i=N-1 ek

for a fixed mesh and for all integers k.
Now, using the Lemma 2.3 and Egs. (30)-(31) for x; € QN
are bounded by a constant , then we have

e, the absolute values of the quantities in the inequality (29)

|PY, (Y =3)(x)| < Ch. (32)
Similarly, the bound on the truncation error in the second component of the solution can be obtained as follows:
1Py, (Y =3)(x)| < Ch. (33)
Combining the results (32) and (33), we get
P, (Y = 7)(x)| < Ch. (34)
O
Lemma 4.2.

At the point of discontinuity x; = d, the error satisfies the following estimate:
P2, (Y ~7)(d)] = Ch.

Proof. Similar to the procedure adopted in [19, 20], the proofis given as follows:
At the point x; = d, we have

PY.(Y -9)(d) = P{.Y (d) - 7(d)
= fild)- P

d+h t d ¢
—f1(d)+ f fy (s)dsdt—— f fyi’(s)dsdt
t=d s=d t=d-hs=d
d+h
“l(d) f Vi (0di= b (d)yi () - bia(d)y2(d)
d+h t t
f f 7 f f(f1+a1yi—b11Y1—b12y2)(S)det
t=d s=d t=d-hs=d
d+h
LD g DA NARR) (@) - by ()

h 2 2

da+

=d
t
s=d p=S$ t=d-hs=d p=

1y

h?
- 7((f1 +a1y; —buyi —biay2)d—h) + (fi + aryy — biiyr — bi2y2)(d + h))
d+h —h d+h

f 1(t)dt+— f (b11y1+ b12y2) (l‘)dt+—f(b11y1+b12y2) (ndt
t=d t=d t=d

t
1
h_ f f f (i+ay, —buyi—bry) (pdpdsdt
d-h

1
h?

t

a(d)
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which implies that

PV -P@|=ch. (35)
Similarly, we obtain

P2, (-7 @) < Ch. (36)

Combining the results (35) and (36), we get

PY,(Y-P)@|=Ch. 37)

Theorem 4.1.
Ify is the solution of the problem (1)-(3) and Y isthe approximation of y obtained using the scheme (18)-(21), then there
exists a constant C, independent of €, u and h, such that

sup max |(Y-P)(x)|<Ch, Vx;i€Qep (38)
0<esu<10sisN

Proof. From Lemma 4.1, using the maximum principle and proper choice of the constant C, it is easy to prove that
(Y =) (x))| < Ch. (39)
Similarly, from Lemma 4.2, it can be seen that
(Y =3)(d)| < Ch. (40)

Combining the results (39) and (40), the desired result follows. O

5. Numerical results

To show the applicability and efficiency of the proposed method, the following test problem is considered:
Example 5.1.

0=x<0.5,

Zr
—e)/ (1) =08y, (x) +3y1(x) — y2(x) = fi(x) ={ Cl 05<x<l ’

" / _ _ ) 1.8, 0=x<0.5,
— [y, (X) = y5(x) = y1(x) +3y2(x) = fo(x) —{ 08 05=x<l.°

»n0=0, yM=2 »0=0 yp(1)=2.

Example 5.1 was also used in [16] for € = p case.
Due to the fact that the exact solution of the test problem is not available, the maximum point-wise errors at all mesh
points using two mesh differences are computed by

N _ N 2N P
EY = max [VN-72N], =12,

Jer  0<i=N

which is the difference between the values of the i " component of the solution of a mesh of N mesh points and the
interpolated value of the solution, at the same point, on a mesh of 2N points. The range of parameters is taken as
E=pu= {1071, 1072,..., 10715} satisfying the condition0<e<pu<1.

The parameter-uniform maximum errors Ejv are obtained by

N _ N -
Ej —mEaxmﬁlejw, j=12.

Further, the rates of uniform convergence pj-v are calculated by

EN

J .

pj.\]:lng (W)’ ]:1,2.
J
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Fig. 2. Numerical solution of Example 5.1 for € = 10_2,,u =10"! and N =256

13

Table 1. Maximum point-wise errors E {Z , parameter-uniform errors E{V and the uniform rates of convergence p{v for the solution
y1 of Example 5.1

u Number of Mesh Points N
64 128 256 512 1024 2048 4096

107! 2.1692E-02  1.1109E-02  5.6231E-03  2.8290E-03  1.4189E-03  7.1056E-04  3.5552E-04
1072 2.1692E-02 1.1109E-02 5.6231E-03 2.8290E-03 1.4189E-03 7.1056E-04 3.5552E-04
1073 2.1692E-02 1.1109E-02 5.6231E-03 2.8290E-03 1.4189E-03 7.1056E-04 3.5552E-04
1074 2.1692E-02  1.1109E-02  5.6231E-03  2.8290E-03  1.4189E-03  7.1056E-04  3.5552E-04
107° 2.1692E-02 1.1109E-02 5.6231E-03 2.8290E-03 1.4189E-03 7.1056E-04 3.5552E-04
1071 2.1692E-02 1.1109E-02 5.6231E-03 2.8290E-03 1.4189E-03 7.1056E-04 3.5556E-04

EN 2.1692E-02  1.1109E-02  5.6231E-03  2.8290E-03  1.4189E-03  7.1056E-04  3.5556E-04

p{v 0.97 0.98 0.99 1.00 1.00 1.00 -
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Table 2. Maximum point-wise errors EZ , parameter-uniform errors Eév and the uniform rates of convergence pév for the solution
y2 of Example 5.1

u Number of Mesh Points N

64 128 256 512 1024 2048 4096
107! 1.7025E-02  8.6425E-03  4.3540E-03  2.1852E-03  1.0947E-03  5.4786E-04  2.7405E-04
1072 1.7025E-02 8.6425E-03 4.3540E-03 2.1852E-03 1.0947E-03 5.4786E-04 2.7405E-04
1073 1.7025E-02  8.6425E-03  4.3540E-03  2.1852E-03  1.0947E-03  5.4786E-04  2.7405E-04
107* 1.7025E-02 8.6425E-03 4.3540E-03 2.1852E-03 1.0947E-03 5.4786E-04 2.7405E-04
107° 1.7025E-02 8.6425E-03 4.3540E-03 2.1852E-03 1.0947E-03 5.4786E-04 2.7405E-04

1071 1.7025E-02 8.6425E-03 4.3540E-03 2.1852E-03 1.0947E-03 5.4786E-04 2.7406E-04
Eév 1.7025E-02 8.6425E-03 4.3540E-03 2.1852E-03 1.0947E-03 5.4786E-04 2.7406E-04
pév 0.98 0.99 0.99 1.00 1.00 1.00 -

Table 3. Comparison of maximum errors(M.E.) and rates of convergence(R.C.) obtained by our method and those in [16] for the
solution component y; of Example 5.1

e=p=2"3 Number of Mesh Points N
64 128 256 512 1024
[16] 1.7890E-02 1.1151E-02 6.4060E-03 3.6164E-03 2.0081E-03
0.6820 0.7997 0.8249 0.8487 -
Ours 2.1692E-02 1.1109E-02 5.6231E-03 2.8290E-03 1.4189E-03
0.97 0.98 0.99 1.00 -

Table 4. Comparison of maximum errors(M.E.) and rates of convergence(R.C.) obtained by our method and those in [16] for the
solution component y» of Example 5.1

E=u= 2730 Number of Mesh Points N
64 128 256 512 1024
[16] 1.5904E-02 9.6979E-03 5.9419E-03 3.4324E-03 1.9536E-03
0.7136 0.7067 0.7917 0.8131 -
Ours 1.7025E-02 8.6425E-03 4.3540E-03 2.1852E-03 1.0947E-03
0.98 0.99 0.99 1.00 -

6. Conclusions

In this paper, a non-standard finite difference method (NSFDM) on a uniform mesh is developed for a weakly
coupled system of singularly perturbed convection-diffusion equations with discontinuous source term. Error esti-
mates are provided and the scheme is proved to be uniformly convergent of order one with respect to the singular
perturbation parameters. A test example is presented which support the theoretical results. From the Table 1 and
Table 2, it can be seen that the error is robust w.r.t. the parameters € and y, and is converging to zero as N is increased.
The results obtained by the present method proves better than the results of existing standard finite difference method
on Shishkin mesh as shown in Table 3 and Table 4. Left boundary layer and weak interior layer can be seen from the
Fig. 1 and Fig. 2 as per the prediction.
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