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Abstract: This paper presents a result which is the generalization of the Banach contraction principle in the Hilbert space,
involving four rational square terms in the inequality. Furthermore, we obtained the corollary of Koparde and
Waghmode by taking vanishing values to some constants in the end of this result.
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1. Introduction

Ever since research in the discipline of Fixed point Theory and Approximation Theory were initiated by Banach in
1922 and then several mathematicians contributed to the growth of this area of knowledge has been extensively
reported in the treatises of Nadler [8], Sehgal [10],Kannan [5], Zamfirescu [15], Wong [14], etc. Also some generaliza-
tions of Banach fixed point theorem were given by D.S.Jaggi [4], Fisher [2], Khare[6]. Ganguly and Bandyopadhyay
[3], Koparde and Waghmode [7], Pandhare [9],Veerapandi and Anil Kumar [13] investigated the properties of fixed
points of family of mappings on complete metric spaces and in Hilbert spaces.

Motivated by the above results, the result which is found here is the refinement and sharpens some of the gener-
alizations of Singh. Th. Manihar [11], Smart [12] and Dass and Gupta [1] results. The theorem follows with the
statement:

2. Theorem

Theorem 2.1.
Let X be a closed subset of a Hilbert space and T : X → X be a self mapping satisfying the following condition

||T x −T y ||2 ≤ a1
||y −T y ||2[1+ ||x −T x ||2]

1+ ||x − y ||2
+a2

||x −T x ||2[1+ ||y −T y ||2]
1+ ||x − y ||2

+a3
||x −T y ||2[1+ ||y −T x ||2]

1+ ||x − y ||2
+a4

||y −T x ||2[1+ ||x −T y ||2]
1+ ||x − y ||2

+a5||x − y ||2

for each x , y ∈ X and x 6= y ,where a1, a2, a3, a4, a5 are non-negative reals with
0≤ a1+a2+a3+4a4+a5 < 1. Then T has a unique fixed point in X .
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Proof. For some x0 ∈ X , we define a sequence {xn} of iterates of T as follows

x1 = T x0, x2 = T x1, x3 = T x2, ....., i.e xn+1 = T xn , for n = 0, 1, 2, 3, .....

Next, we show that {xn} is a Cauchy sequence in X. For this consider

||xn+1− xn ||2 = ||T xn −T xn−1||2

Then by using the hypothesis, we have

||xn+1− xn ||2 ≤ a1
||xn−1−T xn−1||2[1+ ||xn −T xn ||2]

1+ ||xn − xn−1||2
+a2

||xn −T xn ||2[1+ ||xn−1−T xn−1||2]
1+ ||xn − xn−1||2

+a3
||xn −T xn−1||2[1+ ||xn−1−T xn ||2]

1+ ||xn − xn−1||2
+a4

||xn−1−T xn ||2[1+ ||xn −T xn−1||2]
1+ ||xn − xn−1||2

+a5 ||xn−xn−1||2

which implies that

(1−a2−2 a4) ||xn+1−xn ||2+(1−a1−a2) ||xn+1−xn ||2 ||xn −xn−1||2 ≤
�

(a1+2 a4+a5) +a5 ||xn − xn−1||2
	

||xn −xn−1||2

resulting in

||xn+1− xn ||2 ≤ p (n )||xn − xn−1||2

where

p (n ) =
(a1+2 a4+a5) +a5 ||xn − xn−1||2

(1−a2−2 a4) + (1−a1−a2) ||xn − xn−1||2
, f o r n = 1, 2, 3, ...

Clearly p (n )< 1, for all n as 0≤ a1 +a2 +a3 +4 a4 +a5 < 1. Repeating the same argument, we find some S < 1, such
that

||xn+1− xn ||2 ≤λn ||x1− x0||, w he r e λ= S 2

Letting n→∞, we obtain ||xn+1− xn || → 0. It follows that {xn} is a Cauchy sequence in X . So by completeness of X
there exists a point µ ∈ X such that xn →µ a s n→∞.
Also {xn+1}= {T xn} is subsequence of {xn} converges to the same limit µ. Since T is continuous, we obtain

T (µ) = T
�

lim
n→∞

xn

�

= lim
n→∞

T xn = lim
n→∞

xn+1 =µ

Hence µ is a fixed point of T in X . Next, we show the uniqueness of µ; if T has another fixed point v, µ 6= v , then

||µ− v ||2 = ||T µ−T v ||2

≤ a1

||v −T v ||2
�

1+ ||µ−T µ||2
�

1+ ||µ− v ||2
+a2

||µ−T µ||2
�

1+ ||v −T v ||2
�

1+ ||µ− v ||2
+a3

||µ−T v ||2
�

1+ ||v −T µ||2
�

1+ ||µ− v ||2

+a4

||v −T µ||2
�

1+ ||µ−T v ||2
�

1+ ||µ− v ||2
+a5 ||µ− v ||2

which inturn, implies that

||µ− v ||2 ≤ (a3+a4+a5) ||µ− v ||2

This gives a contradiction; for a3+a4+a5 < 1. Thus µ is a unique fixed point of T in X .

Remark 2.1.
Here is our interest, we can get corollary [1] of Koparde and Waghmode [7] by setting a3 = a4 = 0 in the above result.
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